Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Civil Engineering

BCE502 - APPLIED HYDRAULIC ENGINEERING Fifth Semester, 2017 – 18 (Odd Semester)

Course (catalog) description

To introduce the students to various hydraulic engineering problems like open channel flows and hydraulic machines. At the completion of the course, the student should be able to relate the theory and practice of problems in hydraulic engineering. Compulsory/Elective course : Compulsory for Civil students

Credit / Contact hours : 3 credits / 45 hours

Course Coordinator : Mr.S.Rajesh, Assistant Professor

:

Instructors

Name of the	Class	Office	Office	Email (domain:@	Consultation
instructor	handling	location	phone	bharathuniv.ac.in	
Mr.S.Rajesh	Third year Civil-	Civil Block		kaviyacivil@bharathuniv.ac.in	9.00 - 9.50 AM
	A& B				
Ms.B.Kaviya	Third year Civil-	Civil Block			12.45 - 1.15 PM
	C & D				

Relationship to other courses:

Pre –requisites	:	BCE 304 Fluid Mechanics
Assumed knowledge	:	Basic knowledge in Hydraulic machines
Following courses	:	BCE 5L2 Fluid Mechanics and Machinary Lab

Syllabus Contents

UNIT I OPEN CHANNEL FLOW

Types of flow – State of Flow - Velocity distribution - Specific energy, specific force, critical flow computation - flow measurement. Chezy's and Manning's equation, Computation Uniform flow – Normal depth – Hydraulically best section.

9

g

9

UNIT II VARIED FLOW

Varied Flow- Rapid & Gradual - Dynamic equation characteristic of flow profiles – Classification of flow – Computation of the flow profiles – Direct step method - Canal transitions – Hydraulic Jump – Type of Jump, Location of Jumps – Energy losses in Jumps – Surges in Canal – Types of Surges.

UNIT III TURBINES

RotodynamicsMachinary Turbines: Classification of turbines -Work done - Efficiency of Turbines, Pelton Wheel, Francis turbine, Kaplan and propeller turbines. Similarity laws and specific speed. Performance of turbines - impact of free jets.

UNIT IV PUMPS

Rotodynamic Machinery Pumps: Classification of pumps – Centrifugal Pumps – Casing – Impellor – Work done and Efficiency – Cavitations.

UNIT V RECIPROCATING PUMPS

9

Reciprocating pump – Work done – Air Vessel – Indicator Diagram

TEXT BOOKS:

Bansal R K., A Text Book of Fluid Mechanics & Hydraulic Machines - Laxmi Publications 2010

REFERENCE:

- 1. Subramanya K., "Flow in Open channels", Tata McGraw Hill Publishing Company 1986
- 2. 2. Kumar K.L., "Engineering Fluid Mechanics", Eurasia Publishing House (P) Ltd. New Delhi, 1992.
- 3. 3. Rajput R.K, A Text of Fluid Mechanics & Hydraulic machines S.Chand & Co.P.Ltd, 2009.

Computer usage:

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area: open channel flow | design of Hydraulic Machines

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 14	2 Periods
2	Cycle Test-2	September 2 nd week	Session 15 to 28	2 Periods
3	Model Test	October 2 nd week	Session 1 to 45	3 Hrs
Л	University	ТВА	All sessions / Units	3 Hrs.
4	Examination			

Mapping of Instructional Objectives with Program Outcome

This Course is to introduce the principles of various surveying methods and applications to Civil		Correla	tes	to
Engineering projects.		program	n	
		outcom	ie	
	Н	М		L

1.	Be able to apply their knowledge of fluid mechanics in addressing problems in open channels.	a,d,e	b	C
2.	They will possess the skills to solve problems in uniform, gradually and rapidly varied flows in steady state conditions.	a,d,e	b	C
3.	They will have knowledge in hydraulic machineries (Turbines)	a,d,e	b	С
4.	Acquire skills in rotodynamic machineries that will help in their day-to-day-life.	a,d,e	b	С
5.	Acquire skills in Reciprocal pumps.	a,d,e	b	С

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Session	Topics	Problem solving (Yes/No)	Text / Chapter
UNIT I OP	EN CHANNEL FLOW		I
1.	Types of flow	NO	
2.	State of Flow	NO	[T1, R2]
3.	Velocity distribution	NO	
4.	Specific energy	YES	-
5.	Specific force	YES	-
6.	Critical flow computation	YES	-
7.	Flow measurement.	YES	
8.	Chezy's and Manning's equation,	YES	
9.	Computation Uniform flow - Normal depth -	YES	
	Hydraulically best section		
UNIT II V	ARIED FLOW		1
10.	Unit-II	No	
	Varied Flow- Rapid & Gradual		
11.	Dynamic equation characteristic of flow profiles	No	
12.	Classification of flow – Computation of the flow	Yes	[T1 R1 & R3]
12	Direct step method Canal transitions	Voc	
15.	Direct step method - Canar transitions	res	
14.	Hydraulic Jump, Type of Jump,	Yes	
15.	Location of Jumps,	NO	
16.	Energy losses in Jumps	NO	
17.	Surges in Canal	NO	
18.	Types of Surges	NO	

Session	Topics	Problem solving (Yes/No)	Text / Chapter
	TURBINES		
19.		NO	
	Rotodynamics Machinary Turbines	•	
	Classification of turbines		[T1, R1,R2,R3]
20.	Work done	NO	
21.	Efficiency of Turbines	NO	
22.	Pelton Wheel,	YES	
23.	Francis turbine	YES	
24.	Kaplan and propeller turbines.	YES	
25.	Similarity laws	NO	
26.	Specific speed.	YES	
27.	Performance of turbines - impact of free jets	YES	
UNIT IV	PUMPS		
28.	Rotodynamic Machinary Pumps	NO	
29.	Classification of pumps	NO	[T1, R1,R2,R3]
30.	Centrifugal Pumps	YES	
31.	Casing	NO	
32.	Impellor	NO	
33.	Work done	YES	
34.	Efficiency	YES	
35.	Efficiency	YES	
36.	Cavitation.	NO	
UNIT V RE	CIPROCATING PUMPS		[T1, R1,R2,R3]
37.	Reciprocating pump	YES	
38.	Reciprocating pump	YES	
39.	Reciprocating pump	YES	
40.	Work done	YES	
41.	Work done	Yes	
42.	Work done	YES	1
43.	Air Vessel	NO	1
44.	Air Vessel	YES	1
45.	Indicator Diagram.	NO]

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	5%
Assignment	-	5%
Attendance	-	10%
Final exam	-	70%

Prepared by: Mr.S.Rajesh Assistant Professor , Department of Civil

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / Civil / program by the time that they graduate:

- a. An ability to apply knowledge of mathematics, science, and engineering
- b. An ability to design and conduct experiments, as well as to analyze and interpret data
- c. An ability to design a hardware and software system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d. An ability to function on multidisciplinary teams
- e. An ability to identify, formulate, and solve engineering problems
- f. An understanding of professional and ethical responsibility
- g. An ability to communicate effectively
- h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- i. A recognition of the need for, and an ability to engage in life-long learning
- j. A knowledge of contemporary issues
- k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objectives

PEO1: PREPARATION

Civil Engineering graduates will have knowledge to apply the fundamental principles for a successful profession and/or for higher education in Civil Engineering based on mathematical, scientific and engineering principles, to solve realistic and field problems that arise in engineering and non engineering sectors

PEO2: CORE COMPETENCE

Civil Engineering graduates will adapt to the modern engineering tools and construction methods for planning, design, execution and maintenance of works with sustainable development in their profession.

PEO3: PROFESSIONALISM

Civil Engineering Graduates will exhibit professionalism, ethical attitude, communication and managerial skills, successful team work in various private and government organizations both at the national and international level in their profession and adapt to current trends with lifelong learning.

PEO4: SKILL

Civil Engineering graduates will be trained for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS

Civil Engineering graduates will be installed with ethical feeling, encouraged to make decisions that are safe and environmentally-responsible and also innovative for societal improvement.

Course Teacher	Signature
Mr.S.Rajesh	
Ms.B.Kaviya	

Course Coordinator

HOD/CIVIL